Neumann Problems with Indefinite and Unbounded Potential and Concave Terms

نویسنده

  • NIKOLAOS S. PAPAGEORGIOU
چکیده

We consider a semilinear parametric Neumann problem driven by the negative Laplacian plus an indefinite and unbounded potential. The reaction is asymptotically linear and exhibits a negative concave term near the origin. Using variational methods together with truncation and perturbation techniques and critical groups, we show that for all small values of the parameter the problem has at least five nontrivial solutions, four of which have constant sign.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Solutions for Parametric Neumann Problems with Indefinite and Unbounded Potential

We consider a parametric Neumann problem with an indefinite and unbounded potential. Using a combination of critical point theory with truncation techniques and with Morse theory, we produce four nontrivial smooth weak solutions: one positive, one negative and two nodal (sign changing). AMS Subject Classifications: 35J20, 35J60, 58E05.

متن کامل

Multiplicity of Solutions for Resonant Neumann Problems with an Indefinite and Unbounded Potential

We examine semilinear Neumann problems driven by the Laplacian plus an unbounded and indefinite potential. The reaction is a Carathéodory function which exhibits linear growth near ±∞. We allow for resonance to occur with respect to a nonprincipal nonnegative eigenvalue, and we prove several multiplicity results. Our approach uses critical point theory, Morse theory and the reduction method (th...

متن کامل

Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity

We consider a semilinear Neumann problem with an indefinite and unbounded potential and an asymmetric reaction that crosses at least the principal eigenvalue of the operator −Δ + βI in H1(Ω), β being the potential function. Using a combination of variational methods, with truncation and perturbation techniques and Morse theory, we prove multiplicity theorems providing precise sign information f...

متن کامل

Combined effects of concave-convex nonlinearities and indefinite potential in some elliptic problems

We consider a nonlinear Dirichlet problem driven by the p-Laplacian and a reaction which exhibits the combined effects of concave (that is, sublinear) terms and of convex (that is, superlinear) terms. The concave term is indefinite and the convex term need not satisfy the usual in such cases Ambrosetti–Rabinowitz condition. We prove a bifurcation-type result describing the set of positive solut...

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015